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Abstract

The direct study of the vibration of real engine structures with nonlinear bearings, particularly aero-engines, has been

severely limited by the fact that current nonlinear computational techniques are not well-suited for complex large-order

systems. This paper introduces a novel implicit ‘‘impulsive receptance method’’ (IRM) for the time domain analysis of such

structures. The IRM’s computational efficiency is largely immune to the number of modes used and dependent only on the

number of nonlinear elements. This means that, apart from retaining numerical accuracy, a much more physically accurate

solution is achievable within a short timeframe. Simulation tests on a realistically sized representative twin-spool aero-

engine showed that the new method was around 40 times faster than a conventional implicit integration scheme.

Preliminary results for a given rotor unbalance distribution revealed the varying degree of journal lift, orbit size and shape

at the example engine’s squeeze-film damper bearings, and the effect of end-sealing at these bearings.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Most aero-engine assemblies are complex structures involving at least two nested rotors mounted within a
flexible casing via squeeze-film damper (SFD) bearings. Most SFDs are unsupported, as can be seen in Fig. 1,
where a parallel retainer spring is only used with one SFD at the end of each rotor, to provide axial location.
The deployment of SFDs into such structures is highly cost effective but requires careful calculation since they
can be highly nonlinear in their performance, particularly when unsupported [1]. Various techniques have been
proposed by academia for the computation of the unbalance vibration of simple rotor/nonlinear bearing
systems. However, such tools are not well-suited for complex systems that have many degrees of freedom,
thereby severely limiting the direct study of real engine structures. This is evidenced by the fact that there exists
little, if any, published research on the computational analysis of such structures. Indeed, proposed
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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Nomenclature

a, b ¼ [a1 y an]
T, [b1 y bn]

T

a.*b ¼ [a1b1 y anbn]
T

a./b ¼ [a1/b1 y an/bn]
T

a.p ¼ [a1
p ? an

p]T

sin(a) ¼ [sin a1 ? sin an]
T

cos(a) ¼ [cos a1 ? cos an]
T

f vector of squeeze-film forces, unbalance
forces, static loading (Eq. (3))

fk ¼ fðxk; _xk; tkÞ

g ¼ {g(j)} ¼ [g(1)T?g(J)T]T

g(j) ¼ ½M
ðjÞ
1 N

ðjÞ
1 � � � M

ðjÞ
Gj

N
ðjÞ
Gj
�T

gk ¼ g(tk)
Gj total number of gyroscopic locations on

rotor no. j

h time step size
Hf,Hx,Hh,Hg modal matrices defined in Eqs. (2,

5, 18, 19, 27a, 27b)
i counter for nonlinear bearings
Ip

(j) polar moment of inertia at gyroscopic
location no. p of rotor no. j

I identity matrix
j counter for rotors
J total number of rotors
k time-step counter ( ¼ 0,1,y)
L matrix defined by Eq. (29a)
Mp

(j), Np
(j) gyroscopic moments about x, y axes,
respectively, at gyroscopic location no. p

of rotor no. j

n vector of ones
p counter for concentrated gyroscopic ef-

fect location
P total number of rigid-body modes
P block diagonal matrix of diagonal sub-

matrices P(j), j ¼ 1,y,J

P(j)
¼ OðjÞ diagf�I

ðjÞ
1 ; I

ðjÞ
1 ; . . . ;�I

ðjÞ
Gj
; I ðjÞGj
g ¼

OðjÞ

�I
ðjÞ
1 0 � � � ..

.

0 . .
.

0

..

.
� � � 0 I

ðjÞ
Gj

2
666664

3
777775

q vector of modal coordinates (Eq. (1))
qk, _qk ¼ qðtkÞ; _qkðtkÞ

q̂k; _̂qk defined by Eqs. (9 or 21)
r counter for modes
R total number of modes considered

Rxf ;Sxf matrices defined by Eqs. (13, 22)
Rxg, Sxg, Shf, Shg matrices obtained analogously

to Rxf, Sxf

s vector of state variables q, _q (Section 3.2.1)
t time
tk discrete time, ¼ tk�1+h for k ¼ 1,2, y
T matrix defined by Eq. (29b)
vi vector of relative Cartesian displace-

ments at terminals of squeeze-film no. i

(Eq. (31))
vs,i vector of static Cartesian offsets at

squeeze-film no. i

x vector of dynamic Cartesian displace-
ments at the squeeze-films, Eq. (32)

xk; _xk ¼ xðtkÞ; _xðtkÞ

x̂k; _̂xk, defined by Eqs. (11)
xd,i, yd,i dynamic part of vi, Eq. (31)
x, y, z Cartesian frame, Fig. 1
[ ]T matrix/vector transpose
[�] modal parameters pertaining to flexible

modes
[^] modal parameters pertaining to rigid-

body modes
[ � ] d()/dt

Greek letters

ap
(j), bp

(j) rotational deformation about x, y axes,
respectively, at gyroscopic location no. p
of rotor no. j

h ¼ {h(j)} ¼ [h(1)T ? h(J)T]

h(j) ¼ ½ b
ðjÞ
1 aðjÞ1 � � � bðjÞGj

aðjÞGj
�T

_hk ¼ _hðtkÞ

_̂hk defined by Eq. (26b)
l end-leakage factor of a squeeze-film

damper (Ref. [12])
t local time over interval [tk�1,tk]
x vector of natural circular frequencies in

Eq. (1)

wðrÞx value of x in rth mass-normalised mode

wðrÞf , wðrÞg mass-normalised eigenvectors evaluated

at degrees of freedom corresponding to
directions and locations of elements in f, g

wðrÞh mass-normalised eigenvectors evaluated

at degrees of freedom in h
O(j) rotational speed of rotor no. j (rad/s)
q ¼ {qi} ¼ [q1

T?q5
T]T

qi ¼ ½Qxi
Qyi �

T (Cartesian forces on jour-

nal at squeeze-film no. i)
v vector function of s and t (Section 3.2.1)

P.M. Hai, P. Bonello / Journal of Sound and Vibration 318 (2008) 592–605 593



ARTICLE IN PRESS

SFD
(oil film)

dampers 

bearings 

1B 2B 3B 4B
5Bcasing 

1J 2J 3J 4J 5J

y

zx
( )2,1Ω

( )2,1β
( )2,1α engine mounting 

Fig. 1. Schematic of a representative twin-spool engine. (LP: ‘‘low pressure’’, HP: ‘‘high pressure’’).

Eigenvalue analysis Nonlinear computation (MATLAB): 
nonlinear rotating assembly 

FE model  

Pre-processing (NASTRAN): 
linear undamped part (no rotation)  

Fig. 2. Overall computational procedure.
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computational techniques, although ostensibly generic, have almost invariably been illustrated on simple
rotor-bearing systems e.g. Refs. [2–7].

This paper presents the first stage of a project aimed at the development and validation of a suite of
computational techniques for unbalance response computation, suitable for generic whole-engine models,
which will significantly extend the capability of current finite element (FE) packages. The proposed analysis of
the nonlinear rotating assembly uses the modal parameters of the undamped linear part of the assembly under
non-rotating conditions. Implementation is possible through the integration of Nastrans, used for the linear
pre-processing, and specially written Matlabs routines for the subsequent nonlinear computation (Fig. 2).

Owing to the complementary nature and relative merits of time and frequency domain solution techniques
[6] both approaches were developed for the nonlinear computation part. Frequency domain techniques, most
notably harmonic balance (HB), are inherently much faster since they directly yield steady-state solutions that
are assumed to be periodic at an assumed fundamental frequency. However, such periodic vibration is not
always physically possible since a nonlinear system subjected to periodic external excitation (e.g. rotor
unbalance) is capable of non-periodic steady-state vibration. In such a case, a time-marching technique is
used, which yields the actual steady-state response after the initial transients have died out. Moreover, in order
to start off a HB solution procedure over a range of speeds, a good initial approximation at just one speed is
required. This can only be reliably provided by a time domain solution, especially for a large order system [6].

This paper will focus on the development of the time domain solution for the nonlinear response. It is to be
mentioned that, although major FE packages have a time domain solver facility, this is considered by the
authors to be very restrictive in two ways: (i) limitations on the choice of the model for the nonlinear bearing
element (if one is available); (ii) unsuitability of the solution technique for the problem at hand due to the
issues described in the following part of this section.

When dealing with large-order systems, the direct integration of the FE equations is highly time-consuming
and so, is generally avoided [8]. For such applications, two alternative time-saving model-reduction
approaches have been proposed in the literature. One approach is to model the system using transfer matrices
e.g. Ref. [3]. This technique is an alternative to the FE approach of modelling the structure. Unlike FE,
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transfer matrices are not suited for modelling complex sub-systems such as the engine casing. For this reason,
the transfer matrix approach has not crossed over to whole-engine modelling. The other approach, which is
preferred since it exploits the modelling capability of FE, is to transform the FE problem into modal space and
retain only a limited number of modal equations of motion [8]. In either approach, the resulting equations are
solved by a time-marching scheme. Due to problems of ‘‘numerical stiffness’’ [9], implicit time-marching
techniques are preferred. An implicit ‘‘fast integration scheme’’ based on the trapezoidal rule of integration,
was presented in Ref. [4] and shown to be much faster than the (explicit) Runge–Kutta technique when applied
to a simple flexible rotor system with one SFD. At around the same time, Matlab introduced a whole suite of
solvers suitable for stiff systems, based on more sophisticated rules such as the modified Rosenbrock method
used in solver ode23sr[9]. This solver was used extensively in Refs. [6,7] where the modal equations of motion
of various test rigs were integrated. In Ref. [5], the modal equations of motion of a rotor-bearing system were
integrated using an iterative predictor–corrector scheme combining the Central Difference and Newmark–
Beta methods. The system considered there was a gas turbine rotor mounted on two bearing pedestals
simplified as mass–spring systems.

Conventional implicit integration schemes transform the differential equations of motion into an equal
number of algebraic equations which then have to be solved at each time step to obtain the current state
variables. Moreover, if the system contains nonlinear motion-dependent forces, then this solution has to be
obtained by iteration. As shall be shown in this paper, with a real engine a modal transformation would still
necessitate the retention of a very large number of modes. Hence, due to the large number of modal equations,
the time-marching process slows down to impractical levels. For this reason, in order to analyse an aero-
engine, a novel implicit ‘‘impulsive receptance method’’ (IRM) was developed.

The choice of the name for the method derives from the fact that the structural response at a certain degree of
freedom due to unit impulse in another degree of freedom is termed in Ref. [10] as the ‘‘impulsive receptance’’
connecting the two degrees of freedom. This quantity is also the inverse Fourier transform of the corresponding
frequency response function (receptance). The IRM equations derived in this paper are essentially the inverse
Fourier transform of the frequency domain receptance/mobility equations relating the relative displacements
and velocities at the SFDs with the motion-dependent forces and other excitations acting on the linear part of
the structure. Hence, the IRM’s computational efficiency is largely immune to the number of modes used and
dependent only on the number of nonlinear elements. This means that, apart from retaining numerical accuracy,
a much more physically accurate solution is achievable within a short timeframe.

In the following section, the theory of the IRM is presented. In Section 3, the method is tested on a
realistically sized representative twin-spool aero-engine model and validated against a conventional technique.
The results of a preliminary parametric analysis are also presented.

2. Theory

2.1. Outline

The following notation for operations on vectors (i.e. column matrices) shall be adopted: if a ¼ [a1 y an]
T,

b ¼ [b1 y bn]
T, then a.�b ¼ [a1b1 y anbn]

T, a./b ¼ a.�b ¼ [a1/b1 y an/bn]
T, a.p ¼ [a1

p ? an
p]T,

sinðaÞ ¼ ½ sin a1 � � � sin an �
T, etc. This notation is borrowed from Matlab [11] and allows not only the

compact expression of the theory, but highly efficient computational implementation.
The modal parameters in all the theory pertain to the linear part of the assembly under non-rotating

conditions. By ‘‘linear part’’ is meant the structure that remains in Fig. 1 when the SFDs are replaced by gaps.
The damping in the linear part of an engine is commonly regarded as negligible, but the following analysis can
be modified to accommodate proportional damping in the linear part at no computational cost. The
gyroscopic effect is neglected in this sub-section but is considered in Section 2.3.

The equations of motion in modal space are

€qþ ðx.2Þ.nq ¼ HT
f f (1)

In Eq. (1), q is the R� 1 vector of modal coordinates, x the vector of natural frequencies, and Hf the matrix of
mass-normalised eigenvectors wf

(r) (r ¼ 1,y,R) taken at the degrees of freedom corresponding to the
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directions and locations of the elements of f:

Hf ¼ wð1Þf � � � wðRÞf

h i
(2)

f contains the forces external to the linear part: squeeze-film forces, unbalance forces, static forces. The inertia
of the fluid films at the bearings is commonly regarded as negligible (e.g. Refs. [2–7]). Hence, one can write

f ¼ fðx; _x; tÞ (3)

where x; _x are the vectors of the relative x, y dynamic displacements and velocities, respectively, at the squeeze-
film terminals (i.e. journal centre Ji relative to housing centre Bi, i ¼ 1,y,5 in Fig. 1):

x ¼ Hxq; _x ¼ Hx _q (4a,b)

Hx being the matrix whose columns wx
(r) define the values of x in the respective mass-normalised modes:

Hx ¼ wð1Þx � � � wðRÞx

h i
(5)

The wx
(r) are loosely referred to here as ‘‘eigenvectors’’. They are in fact the difference of the eigenvectors wJ

(r),
wB

(r) defining the x, y displacements of Ji, Bi in mode no. r.
Let qk ¼ q(tk) and _qk ¼ _qðtkÞ. qk, _qk are unknown whereas qk�1, _qk�1 are known. Using the Duhamel

integral method [8] over the interval [tk�1,tk], where tk ¼ tk�1+h:

qk ¼ _qk�1:n sinðxhÞ:=xþ qk�1:n cosðxhÞ þ

Z h

0

HT
f fðtÞ

� �
:n sinðxh� xtÞ:=xdt (6a)

_qk ¼ _qk�1:n cosðxhÞ � qk�1:nx:n sinðxhÞ þ

Z h

0

HT
f fðtÞ

� �
:n cosðxh� xtÞdt (6b)

Over the interval 0ptph, f(t) is approximated as

fðtÞ ¼ fk�1 þ ðfk � fk�1Þ
t
h

(7)

where fk ¼ fðxk; _xk; tkÞ and xk ¼ xðtkÞ; _xk ¼ _xðtkÞ. Hence, after substituting Eq. (7) into Eqs. (6a,b), expanding
the trigonometric functions under the integral signs, evaluating the resulting integrals and simplifying, one
obtains:

qk ¼ q̂k þ ðH
T
f fk �HT

f fk�1Þ:n x�
1

h
sinðxhÞ

� �
:

�
ðx:3Þ (8a)

_qk ¼ _̂qk þ ðH
T
f fk �HT

f fk�1Þ:nfn� cosðxhÞg:=ðhx:2Þ (8b)

where

q̂k ¼ _qk�1:n sinðxhÞ:=xþ qk�1:n cosðxhÞ þHT
f fk�1:nfn� cosðxhÞg:=ðx:2Þ (9a)

_̂qk ¼ _qk�1:n cosðxhÞ � qk�1:nx:n sinðxhÞ þHT
f fk�1:n sinðxhÞ:=x (9b)

In Eqs. (8b, 9a), n is a vector of ones (‘‘1’s’’) of the appropriate size. Multiplying both sides of Eqs. (8a)
and (8b) by Hx and noting Eqs. (4a,b):

xk ¼ x̂k þHx HT
f ðfk � fk�1Þ

� �
:n x�

1

h
sin ðxhÞ

� �
:

�
ðx:3Þ

� �
(10a)

_xk ¼ _̂xk þHx HT
f ðfk � fk�1Þ

� �
:nfn� cosðxhÞg:

	
ðhx:2Þ


 �
(10b)

where

x̂k ¼ Hxq̂k; _̂xk ¼ Hx _̂qk (11a,b)
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Eqs. (10a,b) can be simplified to

xk ¼ x̂k þ RxfðhÞ fkðxk; _xk; tkÞ � fk�1

� �
(12a)

_xk ¼ _̂xk þ SxfðhÞffkðxk; _xk; tkÞ � fk�1g (12b)

where the discrete time domain analogues of the receptance and mobility matrices are given by

RxfðhÞ ¼
XR

r¼1

wðrÞx wðrÞTf xr �
1

h
sin orh

� �
o3

r

� �
; SxfðhÞ ¼

XR

r¼1

wðrÞx wðrÞTf ð1� cos orhÞ=ðho2
r Þ

n o
(13a,b)

Eqs. (12a, b) are a set of nonlinear algebraic equations with xk; _xk as unknowns. Hence, one can use an
iterative method to solve for xk; _xk. The number of equations to be solved is hence only four times the number of

SFDs. From Eqs. (12a, b), the initial approximation can be taken as xk � x̂k; _xk � _̂xk. Once xk; _xk are found,
fk is determined, hence from Eqs. (8a, b) one can determine qk; _qk and progress the solution.

2.2. Modification for rigid-body modes

Some of the above expressions need to be modified to account for the presence of rigid-body modes since, in
the linear part of Fig. 1, each rotor is supported at only one point (J1 or J3) about which it is free to pivot. The
rigid-body mode expressions are obtained by taking the limit x-0. From Eqs. (9a, b), one can show that

lim
x!0

q̂k ¼ h_qk�1 þ qk�1 þ
h2

2
HT

f fk�1; lim
x!0

_̂qk ¼ _qk�1 þ hHT
f fk�1 (14a,b)

Also, from Eqs. (13a, b),

lim
x!0

RxfðhÞ ¼
h2

6
HxH

T
f and lim

x!0
SxfðhÞ ¼

h

2
HxH

T
f (15a,b)

From Eqs. (8a, b):

lim
x!0

qk ¼ lim
x!0

q̂k þ
h2

6
ðHT

f fk �HT
f fk�1Þ; lim

x!0
_qk ¼ lim

x!0
_̂qk þ

h

2
ðHT

f fk �HT
f fk�1Þ (16a,b)

If the system has P rigid-body modes, the modal parameters and coordinates are given by

x ¼
0

~x

� �
; Hf ¼ �Hf

~Hf

h i
; Hx ¼ �Hx

~Hx

h i
; q ¼

�q

~q

" #
(17220)

where x has a P-length sub-vector of zeros, �Hf;x contain the eigenvectors of the rigid-body modes, ~Hf;x; ~x
contain the flexible mode parameters, and �q, ~q respectively denote the sub-vectors of rigid and flexible modal
coordinates. Eqs. (12a, b), (13a, b), (8a, b) and (9a, b) are then modified as follows, by combining the above
rigid-body expressions with the flexible mode expressions of the previous section:

q̂k ¼
h�_qk�1 þ �qk�1 þ

h2

2
�H
T

f fk�1

~_qk�1:n sinð ~xhÞ:= ~xþ ~qk�1:n cosð ~xhÞ þ ~H
T

f fk�1:n n� cosð ~xhÞ
� �

:=ð ~x:2Þ

2
4

3
5 (21a)

_̂qk ¼

�_qk�1 þ h �H
T

f fk�1

~_qk�1:n cosð ~xhÞ � ~qk�1:n ~x:n sinð ~xhÞ þ ~H
T

f fk�1:n sinð ~xhÞ:= ~x

2
4

3
5 (21b)

RxfðhÞ ¼
h2

6
�Hx
�H
T

f þ
XR

r¼Pþ1

wðrÞx wðrÞTf or �
1

h
sin orh

� �
o3

r

� �
(22a)
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SxfðhÞ ¼
h

2
�Hx
�H
T

f þ
XR

r¼Pþ1

fwðrÞx wðrÞTf ð1� cos orhÞðho2
r Þg (22b)

qk ¼ q̂k þ

h2

6
�H
T

f fk � �H
T

f fk�1

� �
ð ~H

T

f fk � ~H
T

f fk�1Þ:n ~o� 1
h
sin ð ~xhÞ

� �
:=ð ~x=:3Þ

2
64

3
75 (23a)

_qk ¼ _̂qk þ

h
2

�H
T

f fk � �H
T

f fk�1

� �
~H
T

f fk � ~H
T

f fk�1

� �
:nfn� cosð ~xhÞg:=ðh ~x:2Þ

2
64

3
75 (23b)

2.3. Inclusion of the gyroscopic effect

In order to include the gyroscopic effects, a vector g is introduced containing the gyroscopic moments,
which, like the forces in f, are considered as external to the non-rotating linear part. For the jth rotor
(j ¼ 1,y,J) with speed O(j) the gyroscopic effects are concentrated at Gj points. Hence,

g ¼ P_h (24)

P is a block-diagonal matrix of diagonal sub-matrices PðjÞ ¼ OðjÞdiagf�I
ðjÞ
1 ; I

ðjÞ
1 ; . . . ;�I

ðjÞ
Gj
; I ðjÞGj
g, h ¼ {h(j)},

g ¼ {g(j)}, gðjÞ ¼ M
ðjÞ
1 N

ðjÞ
1 � � � M

ðjÞ
Gj

N
ðjÞ
Gj

h iT
, hðjÞ ¼ ½ b

ðjÞ
1 aðjÞ1 � � � bðjÞGj

aðjÞGj
�T.

For the jth rotor: Ip
(j) is the polar moment of inertia at location p (p ¼ 1,y,Gj); Mp

(j), ap
(j) are the gyroscopic

moment and rotation respectively at location p about the x axis and Np
(j),bp

(j) are the gyroscopic moment and
rotation, respectively, at location p about the y-axis (see the coordinate system of Fig. 1).

Extending Eqs. (12a, b):

xk ¼ x̂k þ Rxfffk � fk�1g þ Rxgfgk � gk�1g (25a)

_xk ¼ _̂xk þ Sxfffk � fk�1g þ Sxgfgk � gk�1g (25b)

_hk ¼ _̂hk þ Shfffk � fk�1g þ Shgfgk � gk�1g (25c)

where the matrices Rxg, Sxg, Shf, Shg are obtained in a similar way to Eqs (22a, b), using modal vectors wh
(r),

wg
(r) taken at the degrees of freedom corresponding to the elements in h and g, respectively, and

_hk ¼ Hh _qk; _̂hk ¼ Hh _̂qk (26a,b)

Hh ¼ wð1Þh � � � wðRÞh

h iT
¼ �Hh

~Hh

h i
; Hg ¼ wð1Þg � � � wðRÞg

h iT
¼ �Hg

~Hg

h i
(27a,b)

Using Eq. (24) in Eq. (25c) and rearranging

_hk ¼ L _̂hk þ LShfffk � fk�1g � LT_hk�1 (28)

where

L ¼ Lðh;Oð1;...;JÞÞ ¼ ½I� T��1; T ¼ Tðh;Oð1;...;JÞÞ ¼ ShgðhÞP (29a,b)

yI being the identity matrix. Hence, using Eq. (24) in Eqs. (25a, b) and substituting Eq. (28):

xk ¼ x̂k þ RxgPL _̂hk � fRxg PLTþ RxgPg_hk�1 þ fRxf þ RxgPLShfgffk � fk�1g (30a)

_xk ¼ _̂xk þ Sxg PL _̂hk � Sxg PLTþ Sxg P
� �

_hk�1 þ fSxf þ SxgPLShfgffk � fk�1g (30b)
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0q , 0q , 0f  , 0g , 0

0q , 0q

( )0000 ,, txxff =   (eq. (3)) 

00 Pg =   (eq. (24)) 

00 qHx x=   (eq. (4a)) 

00 qHx x=   (eq. (4b)) 

00 qH=   (eq. (26a)) 

1−kq , 1−kq , 1−kf  , 1−kg  , 1−k

kx̂  , kx̂  , k
ˆ  (eqs.(11a,b), (26b))

kq̂ , kq̂  (eqs. (21a,b))∗

 solve eqs. (30a,b) for kx  , kx

( )kkkk t,, xxff =   (eq. (3)) 

k   (eq. (28)) 

kk Pg =   (eq. (24)) 

kq , kq  (eq. (23a,b)) ∗

update  k  and restart loop

Fig. 3. Flow chart of IRM computational sequence: (a) loop (k ¼ 1,2,y), (b) starting sequence. *See note on penultimate paragraph of

Section 2.3.
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The above Eqs. (30a, b) now replace Eqs. (12a, b) and are solved for xk; _xk in the same way. One can use the
sum of the first three terms in each equation as a first approximation. _hk is then updated according to Eq. (28).
Eqs. (23a, b) are then used to determine qk; _qk and progress the solution.

The IRM computational sequence is illustrated in Fig. 3. For k ¼ 1, the data fk�1; gk�1; _hk�1, in the first
block of the loop in Fig. 3a are generated by the starting sequence depicted in Fig. 3b. It is noted that

Eqs. (21a, b) and (23a, b) are to be used with the terms �H
T

f fk, �H
T

f fk�1, ~H
T

f fk, ~H
T

f fk�1 replaced by �H
T

f fk þ �H
T

g gk,

�H
T

f fk�1 þ �H
T

g gk�1,
~H
T

f fk þ ~H
T

g gk,
~H
T

f fk�1 þ ~H
T

g gk�1, respectively.

Finally, it is to be noted that any concentrated viscous damping elements can be dealt with in a similar
manner to the gyroscopic moments, without affecting the size of the problem.
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3. Simulations

The computational method was applied to a representative twin-spool aero-engine having the schematic
layout in Fig. 1, using a realistically sized whole-engine FE model provided by an engine manufacturer. Fig. 2
illustrates the overall computational procedure. All simulations were performed in Matlab on a standard
2006-issue desktop pc with Intels Pentiums D CPU 3GHz processor.

3.1. Linear pre-processing

In order to assess the influence of the computed modes, the frequency response functions (receptances) of
the undamped linear part for zero rotational speed were computed from the modal parameters. Fig. 4 shows
the y displacement at B1 (Fig. 1) per unit y force at the same point over the range 0 to 1 kHz, which contains a
total of 934 modes. It is clear that there is a high modal density at relatively low frequencies, considering that
the high pressure (HP) shaft runs at speeds up to 16,000 rev/min and that the nonlinear response will contain
engine orders. One should note that the sudden reduction in modal density beyond 500Hz is merely an
artefact of the degree-of-freedom reduction technique used by the FE modellers.

This exercise clearly shows that, for the nonlinear processing, an attempt at time-saving by integrating a
restricted number of modal equations is not advisable. The use of a residual flexibility technique [8] is not
helpful since this only corrects the static influence of truncated high-frequency modes. Moreover, any attempt
at sifting out some of those low-frequency modes deemed not to significantly affect the vibration is bound to
be both time-consuming and prone to significant errors. It is for this reason that certain whole-engine
modelling specialists actually opt for the highly time-consuming direct integration of the FE equations (i.e. in
physical coordinates).

3.2. Nonlinear computation for the unbalance response

Fig. 5 gives information relating to the constituents of the force vector f in Eq. (3). This vector contains a
static sub-vector defining the distributed weights of the two rotors.

The motion dependence of f is due to the sub-vector of SFD forces q ¼ ½ qT1 � � � qT5 �
T where qi ¼

½Qxi
Qyi �

T defines the Cartesian forces at SFD no. i. Now qi ¼ qiðvi; _viÞ [6] where the vector vi defines the
instantaneous Cartesian displacements of Ji relative to Bi (see Fig. 1):

vi ¼ vs;i þ ½ xd;i yd;i �
T (31)

vs,i defines the static offset of Ji relative to Bi in the x, y directions (under no rotor loading). The vector x in
Section 2 comprises the dynamic components of the relative displacements in Eq. (31), i.e.

x ¼ xd;1 yd;1 � � � xd;5 yd;5

h iT
(32)
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Fig. 4. Point receptance frequency response at point B1 in the y direction.
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The SFDs considered for this illustrative study were single-land and end-fed with oil of viscosity
0.0049N sm�2 at a pressure of 3 bar (gauge). The bearing diameters and radial clearances were typically 200,
0.1mm, respectively, and the land lengths ranged from 16 to 34mm. As in current industrial practice, the
instantaneous pressure distribution in each SFD was approximated by a combining the short and long bearing
expressions through an ‘‘end-leakage factor’’ l representing the degree of end-sealing [12]. Each distribution
was truncated below a cavitation pressure of absolute zero (�101.325 kPa) and numerically integrated across
the oil film to yield the associated SFD forces [6]. For these preliminary calculations, the bearing housings
were assumed to be perfectly aligned with each other prior to rotor assembly (i.e. vs,i ¼ 0, i ¼ 1,y,5).

For all simulations presented in this paper, the unbalance was restricted to two locations U1 and U2 on the
low-pressure (LP) rotor as shown in Fig. 5. The unbalance mass–radius products at these locations were set to
be 6.3 g in-phase. The rotational speeds of both rotors were 10,000 rev/min in the same sense (i.e. co-rotation).

The gyroscopic effect was discretised at 7 points on the LP rotor and 12 points on the HP rotor.

3.2.1. Testing and validation of IRM

An unbalance response problem was solved in two ways: (i) IRM; (ii) ‘‘CIM’’: the conventional implicit
integration of the modal equations (1) using the solver ode23sr [9] available in the Matlab package. In either
case, all 934 modes were considered. In the case of method (ii) Eqs. (1) were cast in the standard form
_s ¼ vðt; sÞ where s is the vector of modal state variables q, _q, and v is a vector function of s and t. Both methods
required a Jacobian matrix at each time step. Method (i) (IRM) required the Jacobian of Eqs. (30a,b) for
solution by the Newton–Raphson method. During the iterative process at a given time step, the inverse of the
Jacobian was updated using Broyden’s method [13]. In the case of method (ii) (CIM), the solver was supplied
with a user-derived expression for the Jacobian qv/qs, as recommended in Ref. [9], since this considerably
accelerated the solution compared to letting the solver compute the Jacobian from first principles. Although
the required Jacobians were different for the two methods (i, ii), in either case the effort in the Jacobian
computation lay in the calculation of the partial derivatives of the SFD forces with respect to the associated
relative displacements and velocities (as can be seen in Ref. [14] for the case of CIM). The SFD force partial
derivatives calculation was performed in both methods (i, ii) by the same routine. Hence, the ensuing
differences in computational speed were attributable purely to the different time-marching algorithms.

Both solvers used an adaptive control of the time step-size h in order to efficiently maintain the numerical
error within a prescribed tolerance. In the case of the IRM, the iterative solution of Eqs. (30a, b) at a given
time step was deemed successful if, among other conditions, the magnitude of the difference between
consecutive iterates fell below the prescribed tolerance and the solution was completed within a set number of
iterations. An estimate for a new step-size hnew,est was computed on the basis of the degree of convergence
obtained with the previous step-size. In order to save time, the programme had the facility to pick a step-size
closely matching hnew,est from a range of discrete step-sizes for which those matrices in Eqs. (30a, b) that
depend on h (like Rxf, Sxf, etc.) had been pre-computed at the start of the time-marching procedure.

Figs. 6 and 7 show that the results obtained by the two methods are in excellent agreement, and that the
IRM was found to be at least 40 times faster than the CIM. The number of equations solved by CIM at each
time step was 934� 2, whereas the number of equations to be solved by the IRM was fixed at a mere 20,
regardless of the number of modes included. For the tolerance setting used to obtain the IRM results in
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Fig. 6b, the difference graphs in Fig. 6c were invariant for tolerance settings of the CIM solver below 1% of
the average radial clearance (the CIM computational time quoted in Fig. 6a is for this latter tolerance). For
coarser tolerance settings of the CIM, the difference was greater than that shown in Fig. 6c. This suggests that
the IRM has also the potential for greater numerical accuracy. The reason for this is that the unknowns of the
algebraic equations solved by the CIM are the modal state variables q; _q. Hence, in order to obtain the relative
displacements and velocities necessary to evaluate the SFD forces, the CIM had to perform a modal
transformation each time. The CIM solver applies its prescribed tolerance to the modal state variables, rather
than the relative displacements and velocities at the SFDs. On the other hand, the IRM equations (30a, b) are
directly formulated in terms of the relative displacements and velocities at the SFDs.

Fig. 7 shows that the close agreement between the two methods was maintained as the solution was
progressed. More simulations performed at other LP rotors speeds also showed that the IRM was at least 40
times faster than the CIM.

3.2.2. Some preliminary results of a parametric analysis

Fig. 8 shows the final steady-state orbits for the above-discussed simulations, for which the end-leakage
factor l ¼ 0.03 (typical value used for engine simulations in industry). SFDs 1, 2, and 5 were on the LP shaft,
which carried the unbalance. Vibration transmission between the two rotors is through the bearing housings,
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whose vibration is shown in Fig. 8b. It is to be noted that SFDs 1 and 3 were spring-supported and the orbit
offsets within the clearances of these SFDs were mainly due to the respective rotor weights. The size, shape
and position of the orbits at the other (unsupported) SFDs were influenced by their static and dynamic
loading. Fig. 9 shows that the steady-state vibration was also periodic for a lower degree of sealing of
l ¼ 0.015 (all other parameters kept the same). The orbits in Figs. 8 and 9 described periodic vibration with a
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Fig. 9. Steady-state orbits for l ¼ 0.015: last five out of first 4000 LP-shaft revs. (a) Relative orbits of journals within the respective

clearance circles and (b) absolute orbits of journal (—) and housing (- - -) centres.

Fig. 10. Steady-state relative orbits of journals within the respective clearance circles for l ¼ 0.01. (a) Last 5 out of first 4000 LP-shaft revs

and (b) last 50 out of first 4000 LP-shaft revs (orbits normalised with respect to corresponding radial clearances).
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fundamental frequency equal to the rotational speed of the unbalanced rotor. As the end-leakage factor was
further reduced to l ¼ 0.010 no such periodic orbits were obtained after several thousand revolutions, as can
be seen in Figs. 10a and b. Hence, it appears that, for the unbalance distribution and rotational speed
considered, the nature of the predicted engine vibration changes from periodic to quasi-periodic as the degree
of sealing is reduced to a very low level. Such aperiodic vibration is similar to that predicted and measured on
other, much simpler, systems with unsealed (i.e. l-0) SFD bearings e.g. Refs. [6,7].
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4. Conclusions

A novel implicit ‘‘IRM’’ has been developed for the time domain computation of the vibration of a whole-
engine model with nonlinear bearings. The IRM’s computational efficiency is largely immune to the number of
modes used and dependent only on the number of nonlinear elements. This means that, apart from retaining
numerical accuracy, a much more physically accurate solution is achievable within a short timeframe.
Simulation tests on a realistically sized representative twin-spool engine showed that the new method was
around 40 times faster than a conventional implicit integration scheme. Preliminary results illustrated the
varying degree of lift and orbit size at the SFD bearings for given unbalance distribution, and the effect of
sealing. The new method is of course equally applicable with other types of concentrated nonlinearities and
should greatly facilitate the hitherto highly restricted nonlinear dynamic analysis of realistic engine structures.
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